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Abstract 

Throughout the history of powder diffraction practice 
there has been uncertainty about whether or not a 
refractive-index correction should be made to Bragg's 
law. High-precision Bragg-angle measurements have 
been performed with synchrotron radiation on SRM- 
640 silicon powders at glancing angles; it is found 
that little or no correction is necessary for the usual 
20 angle range. 

1. Introduction 

The question of the need to use a refractive-index 
correction for powder diffraction data has long been 
cloaked in uncertainty. The problem is discussed in 
this paper and is based on the theoretical background 
and recent measurements of a silicon-powder stan- 
dard using synchrotron in high-resolution parallel- 
beam geometry. 

When X-rays enter a material refraction at the 
surface causes a small shift of the observed Bragg 
reflection angles to larger 20 values than indicated 
by Bragg's law. The shifts are normally much smaller 
than other sources of errors and corrections are not 
generally applied in the usual routine qualitative and 
quantitative powder diffraction analyses. The correc- 
tion has been used mainly in precision lattice-param- 
eter determination (e.g. Lipson & Wilson, 1941) but 
there is no general agreement, and some authors use 
it while others ignore it. In the 1960 IUCr round-robin 
test on the precision of lattice-parameter determina- 
tion of powder samples with Cu Ka radiation, the 
following values were added to the derived lattice 
parameters to correct for refraction: diamond 
0.00004, silicon 0.00004 and tungsten 0-00016A 
(Parrish, 1960). 

Synchrotron-radiation sources now provide im- 
proved resolution because high intensity and the nar- 
row instrument functions can be simultaneously 
exploited (Hastings, Thomlinson & Cox, 1984; 
Parrish, Hart & Huang, 1986). The narrow sym- 
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metrical profiles and general absence of systematic 
errors open the possibility of higher precision and 
more reliable lattice-parameter determination 
(Parrish, Hart, Huang & Bellotto, 1987). The question 
of how one should correct powder data for X-ray 
refraction therefore becomes more important than it 
has been, especially because the move to synchrotron- 
radiation sou~rces also means that wavelengths other 
than the 'standard' copper Ka will be used. 

In the growing field of grazing-incidence diffraction 
studies of thin films, the angular shifts are much larger 
than in conventional 0-20 scanning and corrections 
are necessary for many of the analyses. This is 
described separately (Lim, Parrish, Ortiz, Bellotto & 
Hart, 1987). 

2. Theoretical background 

The index of refraction n of X-rays is slightly less 
than unity and is given by 

n = l - 6  

where 

t~ = ( - e 2 / 2  ,n'mc2) h 2p; ( 1 ) 

e is the charge on the electron, m is the electron mass, 
c is the velocity of light, A is the wavelength in 
~ngstr6ms, and p is the number of electrons per unit 
volume. For wavelengths below about 2 A, 6 is of 
the order of 10 -4 to 10 -5, depending on the density 
of the material. 

Dynamical diffraction is usually associated with 
highly perfect single crystals. However, it is interest- 
ing to note that some of its concepts were required 
to analyze this powder problem. It should also be 
noted that a fundamental premise of kinematic 
diffraction theory is that all parts of the sample are 
illuminated by the full unattenuated primary beam; 
by definition therefore n = 1 and the question of 
refraction cannot arise. In the case of single-crystal 
diffraction it is well established, both theoretically 
and experimentally, that Bragg's law 

2d sin 0L = A (2) 
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is exact only in the case of symmetric transmission 
when the Bragg planes are normal to the surface of 
a plane-parallel crystal plate (James, 1948, 1963). In 
this paper 0L is used to indicate the Laue case for 
symmetric transmission and 0B the Bragg case for 
reflection. In principle the peak shift by X-ray refrac- 
tion varies with f ' ,  f "  (or /x) and polarization, and 
above all the shift in 208 is greatly increased at small 
incident or diffracted angles to the crystal surface. 
Measurements of the index of refraction by oblique- 
reflection Bragg-angle measurements are reviewed by 
James (1948), while calculations of the dispersion 
and polarization shifts in Bragg angles have been 
reported (Hart, 1981). 

For perfect crystals the correction to Bragg's law 
is given in equation (40.10) of the review by James 
(1963). The diffraction angle 20B becomes 

6 [2+sin(O-x) sin(O+x)] 
20B=2OL+sin20L sin (O+x) sin (0-- 

(3) 

where X is the angle between the Bragg planes and 
the crystal surface. Our experiments are more con- 
veniently concerned with angle a between the 
incident beam and the sample surface (0 - X  = a) and 
we may write instead 

[ sina sin(20-a) 1 
2+ . . . .  . 

20B = 20L+sin 20L sin ( 2 0 - a )  s ina  

(4) 

The refractive index correction 6 is typically 10 .5 
at h = 1 ~.  The magnitude of this correction, 20B-- 
20L = ,420, is shown in Table 1, which was calculated 
using 20L = 40 ° and h = 1 ~ for various values of a. 
This table also shows how the measured Bragg angle 
varies with a. The apparent spacing 

d ' =  h /2  sin OB (5) 

differs from the true spacing 

d = h/2 sin OL. (6) 

In the absence of anomalous dispersion, 6 varies with 
h 2 and it turns out that (5) in symmetric reflection is 
an exact equation (James, 1948) but that the constant 
d' is not the spacing between planes. This pseudo- 
Bragg's law has created many misunderstandings in 
the past (Thomson & Burr, 1968). The apparent Bragg 
spacing contraction is, in this example, 86 parts per 
million and it is therefore only significant in high- 
precision work. 

3. Experimental study 

The instrumentation used for the synchrotron-radi- 
ation parallel-beam diffractometry has been described 
previously (Parrish & Hart, 1985). The X-ray optics 
was greatly improved by use of a longer parallel-slit 

collimator which gave profile widths of 0.05 ° (20) 
full width at half maximum (FWHM), as shown in 
Fig. 1. The peak angles of the narrow symmetrical 
profiles were determined statistically to 0.0004 ° using 
a pseudo-Voigt profile-fitting function and repeated 
scans were reproducible to 0.001-0.002 ° . Lattice par- 
ameters were derived by least-squares fitting which 
included only the zero-angle calibration of the diffrac- 
tometer as a systematic error. There were no other 
adjustable parameters and no other significant sour- 
ces of systematic errors were found. The precision of 
setting the grazing incidence angle a was a few 
millidegrees. 

We have routinely used the NBS standard reference 
powder materials in our powder diffractometry at the 
Stanford Synchrotron Radiation Laboratory for 
wavelength calibration and in the assessment of 
aberrations and alignment in parallel-beam 
geometries. The silicon standard which we used in 
these experiments was a 5-10 I~m size sieved fraction 
from SRM-640 stock prepared with a 1:6 col- 
lodion/amyl acetate binder. The samples were 1 mm 
thick by 22 mm diameter with a carefully smoothed 
and flattened surface. 

As Table 1 shows, a measurement of the refractive 
index can be made if the apparent Bragg angle 20B 
is measured for two different angles of incidence a 
with a fixed wavelength h. This is the basis of a 
classical method for X-ray refractive-index measure- 
ments (James, 1948, pp. 168-177). We have done the 
same with SRM-640a silicon powder using a nominal 
wavelength of 1.75 A. 

Table 2 lists the peak positions of six reflections of 
the silicon standard obtained with a 0-20 scan, and 
with 20 scans for which a = 0.5 and 0.25 °. The last 
column shows the deviations between the measured 
20's and results of a least-squares refinement of data 
recorded in a 0-20 run. The refinement also gave the 
zero-angle correction which was 0.0734, and h/2a = 
0.1610991 (260). The precision of this result is about 
the same as that claimed for a single measurement 
of the SRM 640a sample (Hubbard, 1983). Using the 
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Fig. 1. Typical profile shapes of silicon 111 reflection recorded 
with 0-20 scanning (left) and with a = 0.5 ° and detector scan- 
ning (right). Differences of profile fitted and experimental points 
are shown below. ;t = 1.75 ,~. 
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Table 1. Refractive-index correction at 2Or. 
A = I A  

a (o) A20 (°) a (o) k 2 0  (o) 

20 0-0036 0.5 0.0668 
2 0-0176 0.25 0.1324 
1 0.0339 0.1 0.3294 

= 40 °, Table 4. Extinction distances and RL/ RB for silicon, 
A = l . 7 5 A  

hkl A 0 ( ~ m )  Rz /RB hkl A0 ( ~ m )  RL/RB 

111 16-24 5.05 400 13.83 1.74 
220 13.46 2.82 331 18.94 1.52 
311 18.27 2.28 422 12-71 1-22 

Table 2. Reflection angles (o) of silicon computed for 
profile fitting, A = 1.72 

0 - 2 0  scan 20 scan  
hkl °20 a = 0 . 5  ° a = 0 . 2 5  ° d20 (o) 

111 32.3304 32.3369 32.3372 +0.0029 
220 54.1440 54.1506 -0.0021 
31l 64.5208 64.5284 -0.0003 
331 89-1391 89.1340 -0-0039 
422 104.1459 104.1547 +0.0036 
333 113.5923 113.6024 -0.0002 

Table 3. 20 shifts (o) of silicon caused by refraction 
(6 = 9.60 x 10 -6) 

hkl 20 L M ( 0 . 5  °) C ( 0 . 5  °) 

111 32.4006 0.0065 0.0651 
220 54.2142 0.0066 0.0644 
311 64-5910 0.0076 0.0642 
331 89.2093 -0.0051 0.0641 
422 104-2161 0.0088 0.0642 

511/333 113.6625 0-0101 0.0642 

M ( 0 . 2 5  °) C ( 0 . 2 5  ° ) 

0.0068 0.1281 

recommended NBS value a = 5.430825 (36)/~ for the 
powder value at 298 K with no refractive-index correc- 
tion we find A = 1.749732/~. Table 2 shows significant 
but small differences between the measured Bragg 
angles with different obliquities. 

4. Refractive-index calculation 

If anomalous dispersion is ignored, the refractive- 
index decrement for silicon is given by 

--e____~ 2 A2 8 Z  

6 - 2,rrmc 2 a3  . (7) 

For A = 1.75 A, 6 = - 9 " 6  x 10 -6. The expected shifts 
listed in Table 3 were calculated from (4) with the 
derived values of A and zero-angle calibration correc- 
tion. The columns M ( a )  show the measured shifts 
in 20B between the 0-20 setting and the glancing- 
incidence setting. C(a)  is the corresponding value 
calculated from Bragg's law and corrected for refrac- 
tion in the usual way. The observed shifts are an order 
of magnitude less than the calculated values. 

The shift is almost independent of hkl and Bragg 
angle. When a is very small, e.g. 0.01 tad at glancing 
incidence, (4) can be written as 

20B=20L+(26/sin20L)--3/a.  (8) 

Hence C(a)~-6 /a ,  which is independent of hkl. 
The simplest intuitive explanation of this large 

difference between experiment and theory is to note 

that, since the bulk powder is not an optically con- 
tinuous medium, there will be no refractive-index 
correction if each power grain Bragg reflects in 
(nearly) symmetric transmission. Perhaps the refrac- 
tion effect is determined by the single-particle 
geometry, not by the bulk powder geometry. 

One of the earliest quantitative calculations 
examined the ray optics (Snell's law) of a spherical 
particle to obtain a practical refraction-correction 
algorithm (Wilson, 1940). The main conclusion was 
that spherical particles add to the X-ray beam diver- 
gence. In fact, this can be easily seen: a sphere of 
radius r is a diverging lens for X-rays because n is 
less than 1. The focal length f of the lens is given by 
r / 2 ( n - 1 )  and the maximum beam divergence 2 r / f  
equals 4 ( 1 - n ) a .  For silicon at 1.75 A wavelength 
this is 0.0022 ° and it is independent of the size of the 
sphere. Another relevant parameter is the angular 
diameter of the Airy disc formed by Fresnel diffrac- 
tion. It is 1.22A/r which amounts to 0-0022 ° for a 
silicon sphere of radius 5.6 txm at A --1.75 ~ .  

An interpretation of the Ewald/Oseen extinction 
theorem is that the refractive index is not established 
until the wave phase shift amounts to, say, 7r/2 (Born 
& Wolf, 1980). The material thickness is then t <  
1/4Ao where Ao is the extinction distance. Some 
extinction distances are given in Table 4 for silicon 
at A -- 1.75 ~ with linearly polarized radiation. These 
figures might indicate that the apparent refractive 
index should not deviate from unity if the particle 
thickness is less than about 4 ixm, r < 2 txm. 

The question of whether plane-wave or spherical- 
wave theory is required is also interesting. The radius 
r of the first Fresnel half-period zone for a wave front 
at distance R from a point source is given by r =  
(RA) 1/2. For laboratory X-rays at 10cm from the 
source we find r = 3 . 9  p.m if h = 1.54A and r =  
2-4 I~m if h =0.56 A. With synchrotron-radiation 
sources R is more likely to be 25 m, for which r = 
66-1 I~m at h = 1.75 A and r-- 35.4 I~m if h = 0.5 A. 
If, as in these experiments, r = 5  ~m we see that 
synchrotron-radiation experiments and laboratory- 
based experiments will be under different X-ray 
optical regimes! The spherical-wave theory is 
appropriate for the X-ray tube and plane-wave 
diffraction theory applies to synchrotron radiation. 

5. A possible 'theory' 

Let us consider the case of a perfect crystal sphere 
rather than the oxide-coated fracture fragments which 
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we know all powders to be. An exact equation for 
the diffracted intensity from an incident wave is com- 
plicated by the fact that there will be singularities at 
the circle of tangential incidence. Two regions are 
shown in Fig. 2. In region L the diffracted beam is 
formed in transmission (the Laue case) whereas in 
the region B (shaped like a lemon slice with an 
included angle 20) the diffracted beam is formed in 
reflection (the Bragg case). We assume, but will return 
to the point later, that Zachariasen's (1945) formulae 
apply, so that in transmission 

co 

RL= ¢r )-'. JEn+I(2A) 
n = 0  

[equation (3.165) of Zachariasen (1945)] 

=¢rA for A.~I  

= 17"/2 for A >> 1, (9) 

while in the Bragg case 

Rs = rr tanh A 
[equation (3.167) of Zachariasen (1945)] 

= rrA for A < 0 . 4 .  (10) 

In fact, inspection of the graphs of these functions 
[Figs. 3.13 and 3.14 in Zachariasen (1945)] shows 
that his last result is useful up to A = 1.8 if only 5% 
accuracy is required. The parameter A is equal to 
Ao/rr where /to is the extinction distance listed in 
Table 4. 

As a first estimate of the refraction correction let 
us suppose that the correction is the intensity- 
weighted mean of the symmetric-Laue-case and sym- 
metric-Bragg-case values. Since, within the range of 
the joint approximations, Rs = RL in (9) and (10) the 
intensity ratio for B and L is simply the ratio of the 
areas illuminated by the Bragg and Laue beams in 
Fig. 2. Thus 

RB oc 27rr 2 F 

Rt. oz 2"rrr2(1 - F) (11) 

Rt./ Rs = (1-  F)/ F, 

Di ffracted 

\ / /  / Laue ~ n (L) 

Bragg 
Region (B) 

Fig. 2. Bragg and Laue diffraction from an ideal single-crystal 
sphere. 

where F is the fraction of the hemisphere illuminated 
by the reflected beam B. That area is (47rr220)/27r so 
that F=20/180. For h = 1.75/~, and for the silicon 
powder we calculate RtJRB in colums 3 and 6 of 
Table 4. The approximations are reasonable for 
sample thicknesses up to Ao/7r or about 5 lxm accord- 
ing to columns 2 and 5 of Table 4 and indicate that 
transmitted rays dominate the intensity. Therefore the 
intensity-weighted refractive-index correction should 
be much smaller than given by (4). 

6. Concluding remarks 

It would be unreasonable to draw any quantitative 
conclusion from the above calculations. They serve, 
however, ~o indicate qualitatively that in small- 
particle powders a reduced refractive-index correc- 
tion to the Bragg angle is likely. Three regimes can 
be expected: 

(a) For the case r < Ao/rr; r < 2 txm. The extinction 
theorem indicates no refractive-index correction to 
the Bragg angle. This is likely to be the case in all 
synchrotron-radiation experiments where fine parti- 
cles are required for statistical reasons. 

(b) For the case r-"Ao/Tr; 2 < r < 5  ~m. In this 
size regime a small refractive-index correction is 
expected as outlined above. However, since the 
extinction distance is different for each Bragg reflec- 
tion, the refractive-index correction will vary in an 
apparently haphazard way with hk! since Ao is a 
function of the structure factor. For a given h and 
hkl the correction will depend on particle size. 

(c) For the case r~Ao; r>251~m. The limiting 
value of RL in (3) ensures that Rs/RL becomes greater 
than one and increases without limit. The effect is 
accentuated if absorption is taken into account. Large 
particles will therefore show shifts in Bragg angle 
caused by refraction and the curvature of spherical 
surfaces ensures a larger correction than indicated 
by (4). For r-* oo (4) is exact. 

Regrettably, this analysis adds nothing to the basic 
debate (Hubbard, Swanson & Mauer, 1975; Hubbard, 
1983) about why d's  derived by powder diffraction 
are in practice significantly different from those 
measured by single-crystal methods. We have, 
however, been able to give clear advice that small 
enough powder grains should Bragg reflect according 
to the exact Bragg equation 2d sin 01_= A with no 
refractive-index correction necessary. These small 
grains will unfortunately be the least perfect rep- 
resentatives of bulk material. 

Experiments which show a small or zero effect are 
perhaps less convincing than those which demon- 
strate a clear correlation. Our experiments on opti- 
cally continuous films of various iron oxides do show 
large Bragg-angle shifts at glancing incidence which 
are entirely compatible with the predictions of (4). 
We have confidence therefore in the importance of 
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these null results with silicon powder. It is clear from 
other measurements (e.g. electron microscopy) that 
powder grains are not prefect crystals, even if they 
happen to be spheres. 
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Abstract 

The crystallographic concepts of lattice and space 
group are extended to describe materials with crystal- 
lographically forbidden point groups, and a complete 
classification of all two-dimensional space groups 
with rotational order less than 23 is given. 

I. Introduction 

The complete classification of the symmetries of peri- 
odic crystals, carried out in the nineteenth century 
by Bravais, Fedorov, Schoenflies and others, is an 
essential tool for determining and describing the 
structures of materials with diffraction patterns con- 
sisting of Bragg peaks. The classification is organized 
by the 32 crystallographic point groups (ten in two 
dimensions), which specify the symmetry of the 
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macroscopic translationally invariant features of crys- 
ta ls -  crystal habit, responses to external perturba- 
tions etc. Within this classification the description of 
the 14 Bravais lattices and 230 space groups in three 
dimensions (five and 17 in two dimensions) relies 
heavily on periodicity, as specified by the real-space 
lattices which describe the microscopic translational 
symmetries of crystalline materials. 

Quasicrystalline materials have point groups which 
are incompatible with periodicity; their diffraction 
patterns consist of sharp well defined Bragg-like 
peaks, arranged with crystallographically forbidden 
point-group symmetries. The absence of periodicity 
precludes their description in terms of the standard 
classification system. We present here a reformulation 
of the concepts of space groups and lattices which, 
while reducing to the conventional scheme in the 
crystallographic case, is general enough to provide a 
classification of quasicrystalline materials by their 
lattices and space groups. This generalization is 
entirely based in reciprocal (wave-vector) space, 
where quasicrystals and crystals have the common 
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